

Government of Vanuatu PMB 9016, Port Vila, Vanuatu Telephone: 23122 / 22323 Email admin@centralschool.edu.vu

Central School Home School Package

Year 13: MATHEMATICS WITH CALCULUS

Ministry of Education and Training/Ministère de l'Education et de la Formation Republic of Vanuatu/République du Vanuatu

HOME SCHOOL PACKAGE CONTENT

Contents

Lesson activity 1
Lesson Topic: Piecewise functions
Lesson activity 2
Lesson Topic: Limits – Graphical and Numerical approach
Lesson activity 3
Lesson Topic: Differentiating with the first principle
Lesson activity 4 :
Lesson Topic: Differentiating sum of functions
Lesson activity 5 :
Lesson Topic: Quotient rule
Lesson activity 6
Lesson Topic: Chain rule
Lesson activity 7
Lesson Topic: Differentiating parametric functions
Lesson activity 8
Lesson Topic: Second derivatives
Lesson activity 9
Lesson Topic: Differentiate to determine the maxima and minima
Lesson activity 10
Lesson Topic: Points of inflection

Teachers	Names -] -] Subject Week 5 Monday Tuesday	Names : - Mr Randal Taforua - Miss Carla Lishi Subject : MATHEMATICS WITH CALCULUS Week 5 Monday 15 th June, 2020 Tuesday 16 th June, 2020				
Date						
Title	Strand Sub str Lesson	Strand 3: DIFFERENTIATION Sub strand 3.1: Differentiation Basic Skills Lesson Topic: Piecewise functions				
	Students should be able to:					
	SUB- STRAND	SLO #	SPECIFIC LEARNING OUTCOME	SKILL LEVEL	SLO CODE	Achieved Yes/No
		1	identify features of a piecewise function of f(a)	1	Cal3.1.1.1	
		2	identify features of a piecewise function if the function is discontinuous	1	Cal3.1.1.2	
Learning	3.1	3	Identify features of a piecewise function if the limit exits	1	Cal3.1.1.3	
outcomes		4	identify features of a piecewise function if the function is differentiable	1	Cal3.1.1.4	
Introduction	This le backgro other fu	esson ound o nctio	focuses on the piecewise function a on piecewise function is useful when ns.	nd its n worki	nain featu ng with de	res. A basic erivatives of
	Don't p	anic!				

FEATURES OF A PIECEWISE FUNCTION

When observing the piecewise function above, there are some notable features that stand-out to make a piecewise function unique and set apart from other graphs. The following features will be discussed in detail as follows:

- Points of Continuity/Continuous
- Points of Discontinuity/Discontinuous
 - Jumps
 - Holes
- Points of Non-differentiability
- Points where the LIMIT exists
- · Points where the functions are defined.

POINTS OF CONTINUITY / CONTINUOUS

The contours of the piecewise function graph can be likened to an "*electrical circuit*". As long as there is a connection in the set-up, then there will always be a flow of current or electricity. In a piecewise function, this is also evident. If the graph is fluent and continues without any interruptions, then it portrays a segment of CONTINUITY or CONTINUOUS flow.

A function is deemed continuous if its graph can be drawn without lifting pen from paper. The

POINTS OF DISCONTINUITY/ DISCONTINUOUS

In an electrical circuit, if there is a "break" in the connection, then electricity will not flow. Likewise in a piecewise function, if there is a break in a function, then it resembles a place of DISCONTINUITY or DISCONTINUOUS flow. A break in the function can come in the form of a "jump" or a "hole" or asymptotes.

Teacher	Names : - Mr Randal Taf - Miss Carla Lis Subject : MATHEMA	^S orua hi TICS WITH CALCULUS			
i cuciici					
	Week 5 Wednesday 17 th June	, 2020			
Date					
A CONSTRUCTION	Strand 3: DIFFERE Sub strand 3.1: Diffe Lesson Topic: Limit	NTIATION erentiation Basic Skills ts – Graphical and Nume	rical ap	oproach	
	Students should be ab	le to:			
	SUB- SLO SPECIFIC STRAND #	LEARNING OUTCOME	LEVEL	SLO CODE	Achieved Yes/No
\sim	3.1 5 find limit:	s of piecewise functions	1	Cal3.1.1.5	
Learning					
outcomes					
Introduction					
	Find your limit!				

	There are many ways or approaches that can be used to find limits. Listed below are the different					
1	types of methods and situations that entail this very subject.					
	1. <u>GRAPHICAL APPROACH</u>					
	This is alluded to earlier in the previous section. The limit is obtained by approaching the x					
1. Streemen	value from the left and right. If both approaches intersect at a point, then a LIMIT exists. The					
	value of the limit is given by $f(a)$. [the corresponding y value, when x is substituted into f(x)]					
	2. NUMERICAL APPROACH [a.k.a the SANDWICH METHOD]					
	This is done by substituting values that approach x on both terminal ends, and see what value					
Learners	it approaches.					
notes	Example: Find the $\lim_{x \to 0} \frac{\sin x}{x}$					
	At first glance, we know that this function is undefined because we cannot divide by "0". But					
	if we substitute values approaching "0" at both ends, you will notice that it approaches 1.					
	x 0.1 0.01 0.001 0.0001 0 -0.0001 -0.001 -0.01 -0.1					
	<u>Sin x</u> 0.97 0.997 0.998 0.9999 0.9999 0.9998 0.997 0.97					
	Sin x					
	$\lim_{x \to 0} \frac{\sin x}{x} \approx 1$					
	3. DIRECT SUBSTITUTION					
	The limits of any polynomial function can be calculated by direct substitution. Ie					
	$\lim_{x \to 2} x^2 + 3 = (2)^2 + 3 = 4 + 3 = 7$					
	4. LIMITS OF RATIONAL FUNCTIONS					
	If the substitution of the value of "x" into the rational function gives an answer of $\frac{1}{0}$ then the					
	limit may exist by factorizing the equation or simplifying the expression using an identity.					
	$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \frac{(3)^2 - 9}{(3) - 3} = \frac{0}{0}$ therefore the limit may exist; try by factorizing the numerator.					
	$x^2 - 9$					
	$\lim_{x \to 3} \frac{1}{x-3}$					
	$\lim_{x \to -\infty} \frac{(x+3)(x-3)}{x}$					
	$x \rightarrow 3$ $x = 3$					
	$\lim_{x \to 3} (x+3)$					
	(3) + 3 = 6					
	1					

5. FINDING LIMITS TO INFINITY When finding limits to infinity of certain rational functions, the following outcomes can be expected: TOP HEAVY (powers of x is more in the numerator) $\lim_{x \to \infty} x = \ limit \ is \ undefined \ or \ \infty$ Example: $\lim_{x \to \infty} \frac{x^2 + 4x + 1}{x + 3} = \lim_{x \to \infty} \frac{x^2}{x} = \lim_{x \to \infty} x = \infty \text{ undefined.}$ (Only consider highest power in the numerator & denominator) <u>BOTTOM HEAVY</u> (powers of x is more in the denominator) $\lim_{x \to \infty} \frac{1}{x} = 0$ the limit is always ZERO. Example: $\lim_{x \to \infty} \frac{x-4}{x^2 - 2x+3} = \lim_{x \to \infty} \frac{x}{x^2} = \lim_{x \to \infty} \frac{1}{x} = 0$ BALANCED (highest power in the numerator is the same as in the denominator) $\lim_{x \to \infty} = \frac{a}{b}$ the coefficients of the highest powers. Example: $\lim_{x \to \infty} = \frac{3x^2 + 4x - 1}{4x^2 + 6x - 7} = \lim_{x \to \infty} \frac{3x^2}{4x^2} = \frac{3}{4}$ 6. SPECIAL CASE The special case is when finding the limits of trig functions, to have an eye for the result : $\lim_{x \to 0} \frac{\sin x}{x} \approx 1$ Example: Find $\lim_{x \to 0} \frac{3 \sin x}{4x} = \left(\frac{3}{4}\right) \lim_{x \to 0} \left(\frac{\sin x}{x}\right) = \left(\frac{3}{4}\right) \cdot (1) = \frac{3}{4}$

i.	Names : - N - N	Names : - Mr Randal Taforua - Miss Carla Lishi					
Teachers	Subject	: MA	THEMATICS WITH CALCULUS				
	Week 5 Friday 1	Week 5 Friday 19 th June, 2020					
Date							
Caller.	Strand Sub stra	Strand 3: DIFFERENTIATION Sub strand 3.1: Differentiation Basic Skills Lesson Topic: Differentiating with the first principle					
	Students	s shou	ld be able to:				
	SUB-	SLO #	SPECIFIC LEARNING OUTCOME	SKILL	SLO CODE	Achieved Yes/No	
Learning outcomes	3.3	6	use the first principles to differentiate a function (only for polynomials of degree ≤ 3) using $\lim_{h\to 0} \left(\frac{f(x+h)-f(x)}{h}\right)$	3	Cal3.1.3.1	TES/NO	
Introduction	This less equal to	son fo 3 usir	cuses on how to differentiate polynon ng the first principle.	nial fun	ctions of o	degree le	ss or
Sec.	It all s	tarts	with a first step!				
	it all s		with a first step:				

First Principle formula:
$$\int_{1}^{f} \frac{f(x) = \lim_{k \to \infty} \frac{f(x+h) - f(x)}{h}}{h}$$
This formula: $\int_{1}^{f} \frac{f(x) + h) - f(x)}{h}$
This formula vertices exists the horizontal distance and the gradent of the scent i line points, A and B are complexed by the hys.

$$m = \frac{f(x) + h}{df(x) - f(x)}$$
The vertice of the scent i line points to points, A and B are complexed by the hys.

$$m = \frac{f(x) + h}{df(x) - f(x)}$$
How to use the formula:
$$\int_{1}^{f} \frac{f(x) + h}{h} \frac{f(x) + h}{h}$$

$$= \frac{f(x) + h}{h}$$

	 Step 2: Subtract f(x + h) - f(x): f(x + h) - f(x) (x² + 2xh + h²) - x² = 2xh + h² Step 3: Factorize your answer in Step 2 (single out a "h" in the expression) 2xh + h² = h (2x + h)
	• <u>Step 4</u> : Subtitute your answer in Step 3 as the <u>numerator</u> in the formula. (Cancel "h") $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{h(2x+h)}{h} = \lim_{h \to 0} (2x+h)$ • <u>Step 5</u> : Subtitute $h = 0$ into the final expression. (you can REMOVE the STEM now) $\lim_{h \to 0} (2x+h)$ $(2x+0)$ $2x$
Visual aids	https://www.youtube.com/watch?v=gxwbNdBlEMw https://www.youtube.com/watch?v=cdisv5VksuY https://www.youtube.com/watch?v=IGTcIUriGBs
Exercises	Activity :Use the first principle to differentiate the following : (exercise ranging from simple- intermediate -complex) : (All L3)i) $f(x) = 4x$ ii) $f(x) = 2x + 1$ iii) $f(x) = 3x^2$ iv) $f(x) = 2x^2 + 3x + 1$ v) $f(x) = \sqrt{x}$ (Hint : step 3 : multiply by the conjugate of step 2 to cancel h)
8	
Assignment	
Assessment	Porton D. & Loind S. (2002) Dolta Mathematica (Second Edition) Despect
	Barton, D., & Lanu, S. (2002). Dena Mainematics (Second Eanton). Pearson.
References	

Lesson activity 4 :

• /	Names : - Mr Randal Taforua			
	- Miss Carla Lishi			
	Subject : MATHEMATICS WITH CALCULUS			
Teachers				
	Week 5 Friday 19th June, 2020			
Date				
S	Strand 3: DIFFERENTIATION Sub strand 3.1: Differentiation Basic Skills			
	Lesson Topic: Differentiating sum of function	18		
	Students should be able to:			
	SUB- SLO SPECIFIC LEARNING OUTCOME STRAND #	SKILL LEVEL	SLO CODE	Achieved Yes/No
	3.3 7 differentiate sums of functions	2	Cal3.1.2.1	
Learning outcomes				
Introduction				
2	The derivative of a "Sum of functions" is equivalent to finding the su components". This can be the same to for a "Difference". $[(f(a) + f(b)]' = f'(a) \pm f'(b)]$	um of the	derivative of its	"Individual
Learners notes	• Polynomials $y = 2x^{3} + x^{2} + 4$ Find: y'. (hint: differentiate the second sec	he <i>individ</i>	<i>ual parts</i> in the o	equation)

	• Trigonometric Functions Let $f(x) = \sin x + \cos x$. Find $f'(x)$. $f'(x) = (\sin x)' + (\cos x)'$ $f'(x) = \cos x - \sin x$ Same can be said for the "Difference" or "Subtraction". Let $f(x) = \sin x - \cos x$. Find $f'(x)$. $f'(x) = (\sin x)' - (\cos x)'$ $f'(x) = \cos x - (-\sin x)$ $f'(x) = \cos x + \sin x$
	• Combination of addition and subtraction. Let $f(x) = 2x^3 + 6x^2 - 10x - 9$. Find $f'(x)$ Solution: Find the derivatives of each component: • $(2x^3)' = 6x^2$ • $(6x^2)' = 12x$ • $(10x)' = 10$ • $(9)' = 0$ $\therefore f'(x) = 6x^2 + 12x - 10 - 0$ $= 6x^2 + 12x - 10$
Visual aids	https://www.youtube.com/watch?v=keflHzkhKyE https://www.youtube.com/watch?v=PEqCa0U77mc
Exercises	Activity : Differentiate the following: (All L2) • <u>Polynomials</u> i.) $f(x) = 3x^5 - 2x + 3$ ii.) $f(x) = \frac{2}{3}x^9 + 6x - x^{-3}$

	iii.)	$f(m) = -3m^2 - 5m^3$
	iv.)	$f(s) = -\frac{2}{s^2} - \frac{3}{s^4}$
	v.)	$*y = \frac{2}{3}x^{\frac{1}{2}} - \frac{1}{3}x^{6} + 23$
	vi.)	$* y = \sqrt{x} - \frac{3}{\sqrt[3]{x^4}}$
	vii.)	$y = 5ax^{3a} - 7bx^{6b}$ (differentiate with respect to
B Assignment		
Assessment	Barton D & Laird	S (2002) Delta Mathematics (Second Edition) Pearson
References	Sarton, D., & Duird ,	S. (2002). Dena Inamenianes (Second Edition). Feason.

Lesson activity 5 :

	Names :			
	- Mr Randal Taforua			
	- Miss Carla Lishi			
	Subject · MATHEMATICS WITH CALCULUS			
Teachers				
0-0-0-	Week 6			
	Monday 22 nd June, 2020			
Date				
- A	Strand 3: DIFFERENTIATION			
STR	Sub strand 3.1: Differentiation Basic Skills			
	Lesson Tonic Questiont mula			
	Lesson Topic: Quotient rule			
	Students should be able to:			
	SUB- SLO SPECIFIC LEARNING OUTCOME	SKILL	SLO CODE	Achieved
	STRAND #	LEVEL	Cal3 1 2 2	Yes/No
	3.3 3.3 singular functions	-		
Learning				
outcomes				
()				
Introduction				
20	Do not fear failure but rather fear not trying !			
2 Company				
Turanu.				
E.C.	The Quotient Rule is applied when finding the derivatives of a que $f(x)$	otient of	two functions i	n the form
	of $\frac{f(x)}{g(x)}$, whereby f and g are differentiable at x and $g(x) \neq 0$.			
	Quotient Rule			
	If $y = \left(\frac{f(x)}{x}\right)$ then $y' = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{x}$ In short we can	sav: v =	$= \frac{f}{2}$ then $v' =$	$\underline{g}\cdot f' - f\cdot g'$
	$(g(x))$ $(g(x))^2$		g	g²
	Example:			
	Find y' if $y = \frac{2x^2}{x^2+1}$			
	Let $f = 2x^3$ \therefore $f' = 6x^2$ Let $g = x^2 + 1$ \therefore	g'=2x	c	
Learners	1			
notes	$v' = \frac{g \cdot f' - f \cdot g'}{g \cdot g' - f \cdot g'} = \frac{(x^2 + 1)(6x^2) - (2x^2)(2x)}{(2x^2 - 1)(2x)} = \frac{6x^4 + 6x^2 - 4x^4}{(2x^2 - 1)(2x)(2x)} = \frac{2x^4}{(2x^2 - 1)(2x)(2x)} = \frac{6x^4 + 6x^2 - 4x^4}{(2x^2 - 1)(2x)} = \frac{6x^4 + 6x^2 - 4x^4}{(2x^2 - 1)(2x)} = \frac{6x^4 + 6x^2 - 4x^4}{(2x^2 - 1)(2x)} = \frac{6x^4 + 6x^4 + 6x^4}{(2x^2 - 1)(2x)} = \frac{6x^4 + 6x^4}{(2x^2 - 1)(2x)$	$+ 6x^2$		
	$g^2 = (x^2+1)^2 = (x^2+1)^2 = (x^2+1)^2$	²+1)²		

	An Alternative of doing the same problem so that the Quotient Rule is easier to cram , is by finding the derivatives of each function and list the answers in columns – one underneath the other. ; ie
	<u>Denominator</u> $g(x)$ <u>Numerator</u> $f(x)$
	$g = x^{2} + 1 \qquad f = 2x^{3}$ $\therefore g' = 2x \qquad f' = 6x^{2}$
	The arrangement above is tailor made to get the NUMERATOR in the Quotient Rule. The numerator can be calculated by " cross-multiplying " the expressions above.
	$g = x^{2} + 1 \qquad f = 2x^{3}$ $\therefore g' = 2x \qquad f' = 6x^{2}$
	$y' = \frac{g \cdot f' - f \cdot g'}{g^2} = \frac{(x^2 + 1)(6x^2) - (2x^3)(2x)}{(x^2 + 1)^2}$
	There are some cases where the numerator will be hard to be simplified, so it could be left in their crude form.
	https://www.youtube.com/watch?v=8jvDEcQ0wXk https://www.youtube.com/watch?v=06M407zY5eA
Visual aids	
	<u>Activity :</u>
	Use the Quotient Rule to differentiate the following: (All L2)
	3r - 1
	$y = \frac{3x}{4x+2}$
Exercises	$y = \frac{3x^5}{x+1}$
8 Assignment	
rissignment	

0	
Assessment	
	Barton, D., & Laird, S. (2002). Delta Mathematics (Second Edition). Pearson.
References	

	Num							
	Names	:						
		- Mr Randal Taforua						
		- Miss Carla Lishi						
	Subject	: MA'	FHEMATICS WITH CALCULUS					
Teachers								
0-0-0-	Week 6							
	Tuesday	v 23 rd .	June, 2020					
	Wednes	, sdav 24	4 th June. 2020					
Date								
18	Strand	3: DI	FFERENTIATION					
(Ing	Sub str	and 3	1: Differentiation Basic Skills					
Ser ane								
3 4	Lesson	Lesson Topic: Chain rule						
	2000011	roph						
	Students should be able to:							
	SUB			SKILL	SLO CODE	Achieved		
	STRAND	#		LEVEL	310 0000	Yes/No		
	2.2	9	differentiate composite functions (chain rule),	2	Cal3.1.2.3			
	5.5		where f and g are both singular functions					
Learning								
outcomes								
0.000								
0 0 0								
00 115								
Introduction								
	Catch p	hrase t	for the lesson					
S De Barr								
- Charles								

	Background						
	A Composite Function can be defined as having two functions: f and g , whereby one is logged in as an INTERNAL function, and the other as an EXTERNAL one. ie $(f \circ g)(x) = f(g(x))$.						
	Example:						
barrenter	• If $f(x) = x^2$ and $g(x) = x + 1$ then $(f \circ g)(x) = (x + 1)^2$						
	The inner function is $g(x) = x + 1$ and the outer function is $f(x) = x^2$						
	• If $y = (3x^3 + x^2)^4$ The inner function is $g = (3x^3 + x^2)$ and the outer function is $y = x^4$						
Learners	Formula for Differentiating a Composite Function						
notes	If $y = f(g(x))$ then $y' = f'(g(x)) \cdot g'(x)$						
	Example:						
	Differentiate $y = (x^2 + 4x)^3$						
	Solution						
	External: $y = x^3$ $y' = 3x^2$ replace x with the internal function is $y = 3(x^2 + 4x)^2$						
	Internal: $g(x) = x^2 + 4x$ $g'(x) = 2x + 4$						
	Using the FORMULA: $y' = f'(g(x)) \cdot g'(x) = 3(x^2 + 4x)^2 \cdot (2x + 4)$						
	Alternative working is to use the Leibniz notation: where $y = f(g(x))$ and $u = g(x)$						
	Where the CHAIN RULE : $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$						
	Let $u = x^2 + 4x$ $\therefore \frac{du}{dx} = 2x + 4$ Let $y = u^3$ $\therefore \frac{dy}{du} = 3u^2$						
	Using the CHAIN RULE: $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} \rightarrow \frac{dy}{dx} = 3u^2 \cdot (2x+4) = 3(x^2+4x)^2 \cdot (2x+4)$						
	Alternative Analogy:						
	Is to differentiate the equation in LAYERS. Like an onion, each layer is stripped from the outer - innermost.						
	The outer layer will be the POWER.						
	 The inner layer can be a function or Fig function The innermost layer can be an ANGLE (if your 2nd Layer was a Trig Function) 						
	Example : (2 layers)						
	Differentiate: $y = (2x + 5)^3$						
	<u>Solution</u> :						
	Identify the layersstarting from the "outside" into the "innermost". ie,						

	$y = (x^2 + 5)^3$
	2. Inner Function
	$\frac{dy}{dx} = (derivative \ power) \ . \ (derivative \ funtion)$
	$\frac{dy}{dx} = 3(x^2 + 5)^2 \qquad . \qquad (2x) = 6x (x^2 + 5)^2$
	Example : (3 Layers)
	Differentiate $y = Sin^2(2x + 1)$
	Solution
	This equation can be rewritten as : $y = [Sin (2x + 1)]^3$.
	Identify the Layers. 1. Power
	$y = [Sin(2x+1)]^{3}$
	2. Trig Function 3. Angle
	Note: When differentiating Trig Functions, the ANGLE will NEVER CHANGE.
	y' = (derivative of Power). (derivative of Trig Function). (derivative of Angle)
	$y' = -6 \sin^2(2x+1) - \cos(2x+1) $ (2)
	[Notice: angles have NOT changed. Don't be tempted to expand the angle with coefficients.]
	https://www.youtube.com/watch?v=HaHsqDjWMLU https://www.youtube.com/watch?v=KKaRHdZ-Ous
Visual aids	https://www.youtube.com/watch:v=Kkakhu2-Qus
//	Activity: use the chain rule or the formula for composite functions to
Ø	differentiate the following.
Exercises	i) $y = (2x + 3)^{7}$
	ii) $y = (8x \pm x^3)^5$
	y = (0x + x)

	iii.) $y = \sqrt{x^2 + 3x + 1} = (x^2 + 3x + 1)^{\frac{1}{2}}$
	iv.) * $y = \frac{-2}{\sqrt{2x-x^3}} = \frac{-2}{(2x-x^3)^{\frac{1}{2}}} = -2(2x-x^3)^{-\frac{1}{2}}$
	$\mathbf{v.)} * \mathbf{y} = \left(\frac{x+1}{3x-1}\right)^3$
Ö Assignment	
٢	Short quiz
Assessment	Barton D. & Laird S. (2002) Dolta Mathematics (Second Edition) Degreen
References	Barton, D., & Land, S. (2002). Dena Mainemancs (Second Eanton). Pearson.

• /	Names :		
Ň	 Mr Randal Taforua Miss Carla Lishi 		
Teachers	Subject : MATHEMATICS WITH CALCULUS		
Date	Week 6 Thursday 25 th June, 2020 Friday 26 th June, 2020		
Dute	Strand 3. DIFFERENTIATION		
	Sub strand 3.1: Differentiation Basic Skills Lesson Topic: Differentiating parametric function	ns	
	Students should be able to:		
	SUB- STRAND SLO SPECIFIC LEARNING OUTCOME SKILL	SLO CODE	Achieved Yes/No
	3.3 10 differentiate parametric functions 2	Cal3.1.2.4	
Learning outcomes			
Introduction	Parametric equations are functions that are written with variable.	respect to an	other
	Practice makes perfect!		
2	Introduction Parametric equations are functions that are written with respect to another we can come in terms of time, "t" or with " θ " when dealing with trig functions. Eg So when told to differentiate such functions, each individual function is different variable. When finding $\frac{dy}{dx}$, the CHAIN RULE is applied:	prioble. Often this t ; $x = 5 + 3t$; y entiated with respe	hird variable = $Sin\theta$ act to the 3 rd
Learners	By using the CHAIN RULE; we can get $\frac{dy}{dx}$ by dividing the two derivatives; ie $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$		
notes	Example: 1		

	Find $\frac{dy}{dx}$ for the following parametric equations: (All L2)
	i.) $x = t^2$ and $y = 4t$
	ii.) $x = t^2$ and $y = t^2 + 8t + 3$
	iii.) $x = t^2 + 1$ and $y = 2t^2 + 6t$
	iv.) $x = 3sin\theta + 2$ and $y = 4\cos\theta - 1$
	v.) $x = 2\cos\theta$ and $y = 2\sin^2\theta$
8	
Assignment	
	Short quiz
Assessment	
References	Barton, D., & Laird , S. (2002). Delta Mathematics (Second Edition). Pearson.

	Names :					
	- M	lr Ra	ndal Taforua			
	- Miss Carla Lishi					
	Subject :	MA	THEMATICS WITH CALCULUS			
Teacher						
F	Week 7					
1	Monday	Monday 29 th June, 2020				
	Tuesday	30 th .	June, 2020			
-10	Strand 3	:DI	FFERENTIATION			
A.	Sub stra	nd 3.	1: Differentiation Basic Skills			
a stante						
3 4	Lesson 7	Fonio	··· Second derivatives			
	Lesson	opn	. Second derivatives			
	Students	shou	ld be able to:			
	SUB	sio	SPECIFIC LEARNING OUTCOME	SKILL	SLO CODE	Achieved
	STRAND	#	SPECIFIC LEARNING OUTCOME	LEVEL	SEO CODE	Yes/No
	2.2	11	finding the second derivatives of a given	2	Cal3.1.2.5	
	3.3		function			
Learning						
outcomes						
Q =						
18 14						
Introduction						
Sec.						
(THE						
12						
The Aler						
Berth	Introductio	on				
C.	Finding the	second	derivative simply means to differentiate the deriver	d function	It means having	"back-to-
1 1	back" differ	entiatio	ns after differentiating the original function. We di	fferentiate	a function first,	then our
	answer is di	fferent	ated again. This can be shown by using various not	ations:		
Concernant and the second	(f(x)	differentiate once $\rightarrow f'(x)$ differentiate	twice -	$\rightarrow f''(x)$	
		v	differentiate once $\rightarrow \frac{dy}{dt}$ differentiate	twice -	$\frac{d^2y}{d^2y}$	
	200000000	1	dx dx		đx	
	Example:					
	Determine	the se	cond derivative for the function; $f(x)=x^3$	$+ 3x^2$	+ 2x + 3.	
.	. 15	Deriv	tive: Differentiate the original equation			
Learners	D	iffere	$ntiate f(x) : f'(x) = 3x^2 + 6x + 2$			
notes		,,				
	• 2 ⁿ	^d Deriv	ative: Differentiate your answer in Step:1			
	Di	iffere	ntiate f'(x) : f''(x) = 6x + 6			

	Find $\frac{d^2y}{dx}$ if $y = \cos x$
	 <u>1st Derivative</u>: Differentiate the original equation.
	Differentiate y : $\frac{dy}{dx} = -Sin x$
	 2nd Derivative: Differentiate your answer in Step-1
	$\frac{2}{y}$
	Differentiate $\frac{dx}{dx}$: $\frac{dx}{dx} = -\cos x$.
	https://www.youtube.com/watch?y=WC5VYKI807O
Vicual aids	
Visual alus	A otivity .
Å	Find the second derivative of the following: (All L2)
, Carl	
Exercises	1.) $y = 8x^3 + 5x$
	ii.) $f(x) = 2x^3 + 6x^2 + 2x + 1$
	(iii.) Evaluate $f''(1) if f(x) = 5x^3$
	$E_{1} = E_{1} = \frac{d^{2}y}{dt}$ if $y = t^{3} + 4t^{2} = 2$
	$\frac{1}{dt} = \frac{1}{dt} + \frac{1}{dt} + \frac{1}{dt} + \frac{1}{dt} = \frac{1}{2}$
	Workout the second derivative of the following functions:
	i.) e^{3x}
	ii.) $ln(5x)$
	iii.) Sin 6x
	Anton gat a transformati şâlet
	ix_{i} 2 Cos 3t
	in the second

B Assignment	
	Short Quiz (20 mins)
Assessment	
	Barton, D., & Laird, S. (2002). Delta Mathematics (Second Edition). Pearson.
References	

•	Names :						
	- Mr Randal Taforua						
	-]	- Miss Carla Lishi					
Teacher	Subject	Subject : MATHEMATICS WITH CALCULUS					
	Week 7						
	Wednes Thursda	Wednesday 1 st July, 2020 Thursday 2 nd July, 2020					
Date							
A COMPANY	Strand Sub stra Lesson	Strand 3: DIFFERENTIATION Sub strand 3.1: Differentiation Basic Skills Lesson Topic: Differentiate to determine the maxima and minima					
	Students	s shou	Ild be able to:				
	SUB- STRAND	SLO #	SPECIFIC LEARNING OUTCOME	SKILL LEVEL	SLO CODE	Achieved Yes/No	
Learning	3.3	12	solve problems by finding the maxima or minima with proof for polynomial and rational functions	3	Cal3.1.3.2		
outcomes							
Introduction							
	Never g	ive uţ	o, try again, try harder!				

NATURE

Finding the NATURE of each stationary point can be done by finding the second derivative $\frac{d^2y}{dx}$

 $y' = 3x^2 - 12x$ \therefore y'' = 6x - 12

<u>At point (0, 0)</u>, we substitute the x value of stationary point into the second derivative:

∴ y'' = 6x - 12 = 6(0) - 12 = 0 - 12 = -12 since it is NEGATIVE f''(x) < 0∴ the staionary point (0,0) is a MAXIMUM.

At point (4, -32), we substitute the x value of stationary point into the second derivative:

∴ y'' = 6x - 12 = 6(4) - 12 = 24 - 12 = 12 since it is POSITIVE f''(x) > 0∴ the staionary point (4, -32) is a MINIMUM

Word Problems in Maxima/Minima

The concept of finding the Maxima/Minima, is very similar to the concept of finding the stationary points as stipulated in the previous exercises, hence, the same flowchart can be used to solve word problems. The principle steps are shown by the flow chart given below:

this x is substituted back into the original equation f'(x)

CHALLENGE:

The only difficulty here is that the ORIGINAL equation is <u>NOT</u> given. You will have to use the information given and your basic knowledge of some common formulas like Area, Volume, Surface Area, Scale Factors, etc depending on the type of question being asked.

TIPS FOR ATTEMPTING MAXIMA/MINIMA PROBLEMS

- · Read the word problem twice (or thrice), and highlight specific "terms" the problem uses.
- Find out what is it asking for? Area, Volume....and what shape are we dealing with, a sphere/triangle, etc?
- Draw a diagram. Try and have a mental picture of what you're solving.
- Use the information given and the formulas anticipated to find your EQUATION.
- Once you have your equation use the CONCEPT MAP above to get your MAXIMA/MINIMA.

Example

A farmer wanted to fence a rectangular piece of land for his cattle and goats. The rectangular paddock is to be partitioned to cater for both animals. The land is exactly located to the side of a cliff. If he used 1200m of wire, to fence his land, find the maximum area that land will enclose?

Step:1

Key words: "rectangular" - so the shape is a rectangle. Maximum AREA : Area = L x W

	 A square piece of tin has 12 cm on each side. An open box is formed by cutting out equal square pieces at the corners and bending upward the projecting portions which remain. Find the maximum volume that can be obtained.
	 The sum of one number and twice another is 24. Find the two numbers so that their product is a maximum
	4. Find the stationary points for the following, and determine their nature.
	a.) $y = 2x - \frac{1}{6}x^3$
	b.) $f(x) = x^2 + 3x + 4$
	c.) $y = cosx + x$ for $0 < x < \pi$
8	
Assignment	Short quiz
Assessment	
References	Barton, D., & Laird , S. (2002). Delta Mathematics (Second Edition). Pearson.

Names : - Mr Randal Taforua - Miss Carla Lishi Subject : MATHEMATICS WITH CALCULUS								
 Mr Randal Taforua Miss Carla Lishi Subject : MATHEMATICS WITH CALCULUS 								
- Miss Carla Lishi Subject : MATHEMATICS WITH CALCULUS								
Subject : MATHEMATICS WITH CALCULUS								
Subject : MATHEMATICS WITH CALCULUS								
		Subject : MATHEMATICS WITH CALCULUS						
Teachers								
Week 7 Friday 3 rd July, 2020	Week 7 Friday 3 rd July, 2020							
Date								
Strand 3: DIFFERENTIATION								
Sub strand 3.1: Differentiation Basic Skills								
Lesson Topic: Points of inflection								
Students should be able to:								
SUB- SLO SPECIFIC LEARNING OUTCOME SKILL SI STRAND # LEVEL	LO CODE	Achieved Yes/No						
3.3 13 differentiate to find the points of 3 C inflection	al3.1.3.3							
Learning								
outcomes								
Introduction								
Catch phrase for the lesson								
Recall:								
Stationary points and points of inflection.	Stationary points and points of inflection.							
A stationary point on a curve is one where the gradient is zero. Stationary points incl	lude not only t	urning						
points (maximum points and minimum points), but also a new kind of point called a p	point of inflect	tion.						
One way to determine the point of inflection is to see its point of CONCAVITY.	One way to determine the point of inflection is to see its point of CONCAVITY.							
Concavity tells us whether the graph bends downwards or upwards as shown								
in the diagram below.								
f''(x) < 0								
This graph is concave up: This graph is concave down:	C = point o	of inflection						
Learners								
notes								

	When x is between 2 and 3, the quantity $x - 2$ is positive but $x - 3$ is negative so f^* is
	negative:
	Sign of f (x)
	positive negative
	$x \rightarrow x$
	Finally, when x is greater than 3 both $x - 2$ and $x - 3$ are positive, so f' is positive:
	Sign of $f''(x)$
	f''(x) = f''(x) = f''(x)
	2 3 x
	Since the sign of f^* changes at $x = 2$ and $x = 3$, these are both inflection points.
	https://www.youtube.com/watch?v=3TJLOCYrTes https://www.youtube.com/watch?v=auA0wJ71Gk0
	https://www.youtube.com/watch?v=k7hIb5ydWGc
Visual aids	https://www.youtube.com/watch?v=osOepf7K1gM
11	Activity :
	For the function, find all points of inflection or determine that no such
Exercises	points exist.
	$x_{(n)} = x^3 + 3$
	$f(x) = \frac{1}{2x^2}$
	ii.) For the function, find all points of inflection or determine that no such points exis
	$f(x) = \frac{1}{2}x^4 - \frac{5}{2}x^3 + 3x^2 + \frac{1}{2}$
	12^{-12} 6^{-100} 2^{-12}
	iii.) For the function, find all points of inflection or determine that no such points exis
	$f(x) = x \ln x$ for $x > 0$
	Source:www.Shmoop.com)
Ų	
0	
Assignment	
Assessment	
	Barton, D., & Laird, S. (2002). Delta Mathematics (Second Edition). Pearson.

WEEKLY

Parents:

CHECKLIST For

Term: 2 Week number 1 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 2 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 3 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 4 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 5 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 6 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 7 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 8 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 9 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 10 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 11 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 12 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 13 Date..... to..... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				