Central School Home School Package

Year : 11 MATHEMATICS 2020

Ministry of Education and Training/Ministere de 1Education et de la Formation Republic of Vanuatu Reqpublique du Vanuatu

HOME SCHOOL PACKAGE CONTENT

GEOMETRY \& TRIGONOMETRY

Lesson 1. 3
Lesson 2 7
Lesson 3 11
Lesson 4 16
Lesson 5 20
Lesson 6 24
Lesson 7 29
CIRCLE GEOMETRY
Lesson 8 33
Lesson 9 38
Lesson 10 43
Lesson 11 48
PARENTS' TASK 53

LESSON Plan

Name : Mrs. Suzanne Santhy
Subject : Mathematics

Learners notes	Summary
	Example : Let's find the length of BC on the triangle below : If we look at the 20° angle, BC is opposite this and we have the length of the hypotenuse. Remembering the trig. ratios, we need to use the sine formula, as
	$\begin{aligned} \sin \left(20^{\circ}\right) & =\frac{B C}{5} \\ 5 x \sin 20^{\circ} & =B C \\ B C & =1.710 \mathrm{~cm}(4 \text { s.f }) \end{aligned}$
	If we had to find AB , we would use the sine formula :
	$\begin{aligned} \cos \left(20^{\circ}\right) & =\frac{A B}{5} \\ 5 \times \cos 20^{\circ} & =A B \\ A B & =4.698 \mathrm{~cm}(4 \text { s.f }) \end{aligned}$
	If we are given the lengths of at least two of the sides of a right- angled triangle, we can find the angles of the two remaining angles using the same formulae. You will need to use the $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$ functions on your calculator. Example :
	Find the unknown angle in the given triangle :
	Solution : To find the angle :
	$\begin{aligned} <x & =\tan x=\frac{6}{8} \\ \tan x & =0.75 \\ \tan ^{-1}(0.75) & =36.9^{\circ} \\ x & =36.9^{\circ}(1 \text { d.p }) \end{aligned}$

Visual aids

| Note : It is a must that you (students) do this package and complete it in time |
| :--- | :--- |
| allocated because assessments will be given later. |

LESSON Plan

Name : Mrs. Suzanne Santhy
Subject : Mathematics

| 3.An observer standing 50 metres away from a
 vertical cliff is looking at a tree at the top. The
 angle of elevation of the top of the tree is 40°,
 and the angle of elevation of the bottom of the
 tree is 31°. Calculate the height of the tree to
 the
 nearest
 metre. |
| :--- | :--- | :--- | :--- |
| 4. From the top of a vertical cliff 40 m high, the angle of depression of an object that |
| is level with the base of the cliff is 34°. How far is the object from the base of the |
| cliff? |

Assessment

LESSON Plan

Name : Mrs. Suzanne Santhy
Subject : Mathematics

We can use single letters to name sides and angles in a triangle.

The diagram above shows triangle ABC .
The three angles can be named A, B and C (capital letters)
The name sides it is logical to use the same letter as the angle opposite it. We
or labels of the sides are a, b and c.

	$\frac{a}{\sin A}=\frac{b}{\sin 21^{\circ}}=\frac{9}{\sin 46^{\circ}}$ So we don't need to use all 3 ratios, so exclude $\frac{a}{\sin A}$ then use : $\begin{aligned} & \frac{b}{\sin 21^{\circ}}=\frac{9}{\sin 46^{\circ}} \quad \text { to find side } b . \\ & \frac{b}{\sin 21^{\circ}}=\frac{9}{\sin 46^{\circ}} \quad \text { (cross multiply to solve the equation to find } b \text {) } \\ & b=\sin 21^{\circ} \times \frac{9}{\sin 46^{\circ}} \\ & b=4.48 \mathrm{~cm}(3 \text { s.f }) \end{aligned}$
Visual aids	
	Exercise : Calculate the length marked x in each triangle. Give answers correct to 4 sf. 2.

Assessment

LESSON Plan

Name : Mrs. Suzanne Santhy
Subject : Mathematics

	Catch phrase for the lesson The sine rule can be used to work out angle sizes in triangles.
Learners notes	Summary
	Example :
	Calculate the size of angle θ.
	Solution :
	Firstly it's a convenient approach to label the triangle :
	Write down the sine rule and substitute the given values from the diagram $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
	Use only : $\frac{\sin A}{a}=\frac{\sin B}{b}$
	We have : $\frac{\sin 65^{\circ}}{8}=\frac{\sin \theta}{6}$ $\begin{gathered} \sin \theta=\frac{\sin 65^{\circ} \times 6}{8} \\ \operatorname{Sin} \theta=0.6797 \\ \theta=42.8^{\circ}(1 d p) \end{gathered}$

Visual aids
(s)

LESSON Plan

Name : Mrs. Suzanne Santhy
Subject : Mathematics

Visual aids

Assignment	Note : It is a must that you (students) do this package and complete it in time allocated because assessments will be given later.
Assessment	

LESSON Plan

Week : 7
Tuesday : 30/06/20 : Mrs. Suzanne Santhy
Subject : Mathematics

	Catch phrase for the lesson The cosine rule can be used to find an angle in a non right- angled triangle.
Learners	Summary The Cosine rule : $\begin{aligned} & \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\ & \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\ & \cos C=\frac{a^{2}+b^{2}-c}{2 a b} \end{aligned}$
	Example : Use the cosine rule to calculate the size of $<A$ in this triangle. Solutions: Firstly, label the angles and sides of the triangle : We are given three sides of the triangle and the cosine rule to be used to find angle A :

	$\begin{aligned} \cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\ \cos A & =\frac{5^{2}+6^{2}-3^{2}}{2 \times 5 \times 6} \\ \cos A & =\frac{\mathbf{2 5}+36-\mathbf{9}}{\mathbf{6 0}} \\ & =\frac{52}{60} \\ A & =\cos ^{-1}(0.86)=29.9^{\circ}(1 d p) \end{aligned}$
Visual aids	
	Exercise : Use the cosine rule to calculate the unknown values to decimal place. 1. 2.

LESSON Plan

	Name : Mrs. Suzanne Santhy Subject : Mathematics
Teacher	
Date	Week: 7 Wednesday: 01/07/20
	Topic : GEOMETRY \& TRIGONOMETRY Sub-Strand : Triangle Trigonometry Lesson number : 7
Learning outcomes	SPECIFIC LEARNING OUTCOMES: - Use the general area formula Area $\mathrm{A}=1 / 2 \mathrm{absinC}$ to find the area of a triangle
Introduction	AREA OF A TRIANGLE - Two sides and the 'included angle' We can use trigonometry to calculate the area of a triangle if we know the lengths of two sides and the size of the angle between the two sides. This angle is often referred to as the included angle.

Learners
Visual aids
4. An equilateral triangle has an area of $100 \mathrm{~cm}^{2}$. Calculate the length of each
side.

LESSON Plan

Name : Mrs. Suzanne Santhy
Subject : Mathematics

Introduction | Up to now we have measured angles in degrees. A more natural method is to |
| :--- |
| define a new unit, called a radian. We all learn to use degrees when measuring |
| angles, but most science and engineering applications use radians. |

To convert degrees to radians,
Multiply by $\frac{\pi}{180}$
Often it is best to leave your answer in terms of π.

Example (i) :

Convert 45° to radians. Leave your answer in terms of π.

Solution :

$45^{\circ}=45^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{1}{4} \times \pi=\frac{\pi}{4}$

To convert radians to degrees
Multiply by $\frac{180}{\pi}$

Example (ii) :
Convert $\frac{2 \pi}{3}$ radians to degrees.
Solution :

$$
\frac{2 \pi}{3}=\frac{2 \pi}{3} \times \frac{180^{\circ}}{\pi}=\frac{360^{\circ}}{3}=120^{\circ}
$$

What is 1 radian in degress ?
One radian is the angle at the centre of a sector with an arc length equal to its radius.

The angle if 1 radian looks as though it could be close to 60°. To be precise :

$$
1 \text { radian }=1 \times \frac{180^{\circ}}{\pi}=\frac{180^{\circ}}{3.142}=57.3^{\circ}
$$

Visual aids	
	Exercise : 1. Convert these angle measurements to radians in terms of π. a) 60° b) 150° c) 315° 2. Convert these angle measurements to radians to 4 s.f. a) 31° b) 210° c) 529° 3. Convert these angle measurements to degrees : a) $\frac{\pi}{2}$ b) $\frac{4 \pi}{5}$ c) $\frac{4 \pi}{9}$ 4. Convert these radian measurements to degrees. Give your answers to 1 dp . a) 0.613 b) 2 c) $\frac{2}{5}$
	Solutions : 1. a) $\frac{\pi}{3}$ b) $\frac{5 \pi}{6}$ c) $\frac{7 \pi}{4}$ 2. a) 0.5411 b) 3.665 c) 9.233 3. a) 90° b) 144° c) 80° 4. a) 35.1° b) 114.6° c) 22.9°

Assignment	Note : It is a must that you (students) do this package and complete it in time allocated because assessments will be given later.
Assessment	

LESSON Plan

Name : Mrs. Suzanne Santhy
Subject : Mathematics

Introduction	ARC LENGTH The length of an arc is proportional to both: - The angle at the centre of the arc - The radius of the arc Consider the diagrams below: 1 Two sectors have the same radius: Sector B has an angle twice the size of sector A. This means the arc length of sector B is twice the arc length of sector A. 2 Two sectors have the same sector angle: Sector B has a radius three times the length of sector A. This means the arc length of sector B is three times the arc length of sector A.
	Catch phrase for the lesson The arc length is the measure of the distance along the curved line making up the arc.
Learners notes	Summary Because arc length is proportional to both the centre-angle of a sector and the radius, we have the arc-length formula: $s=$ arc length $r=$ length of radius $\theta=$ angle at centre of sector, measured in radians One consequence of this is that radians do not have 'units' Example Calculate the size of the angle labelled θ in degrees Solution: From the arc length formula: $\begin{aligned} \theta & \left.=\frac{s}{r} \text { (Making } \theta \text { the subject }\right) \\ \theta & =\frac{6}{5}=1.2 \text { radians } \\ 1.2 \text { radians } & =1.2 \times \frac{180}{\pi}=68.8^{\circ} \end{aligned}$

Using the arc length formula

	1. Calculate the length of the arc for these sectors with these measurements: a. Radius 3 cm ; centre angle 2 radians b. Radius 6 mm ; centre angle $\frac{3 \pi}{4}$ (leave answer in terms of π) c. $r=6 \mathrm{~cm} ; \theta=60^{\circ}$ 2. Calculate the length of radius for each of the sectors with these measurements. Give answers to 4 s.f: a. $s=6.4 \mathrm{~m} ; \theta=2$ b. centre angle $=\frac{2 \pi}{3}$; arc length $8 \pi \mathrm{~cm}$ c. $s=45 \mathrm{~cm} ; \theta=128.7^{\circ}$	
	3. Calculate the centre angle in radians for the sectors with these measurements: a. $s=12 \mathrm{~cm} ; r=3 \mathrm{~cm}$ b. $s=6 \pi \mathrm{~cm} ; r=4 \mathrm{~cm}$ 4. Calculate the centre angle in degrees for the sectors with these measurements, correct to $1 \mathrm{~d} . \mathrm{p}$. where necessary: a. $s=3 \pi \mathrm{~cm} ; r=6 \mathrm{~cm}$ b. radius 0.81 m ; arc length 0.45 m 5. Calculate the perimeter for these sectors: a. b.	Solutions: 1. a) 6 cm b) $\frac{9 \pi}{2} \mathrm{~mm}$ c) 6.283 cm 2. a) 3.2 m b) 12 cm c) 20.03 cm 3.a) 4 b) 4.712 4. a) 90° b) 31.8° 5. a) 13.05 mm b) 51.77 cm

| Note : It is a must that you (students) do this package and complete it in time |
| :---: | :---: |
| allocated because assessments will be given later. |

LESSON Plan

	Name: Mrs. Suzanne Santhy Subject : Mathematics
Teacher	
Date	Week: 8 Tuesday: 07/07/20
	Topic: GEOMETRY \& TRIGONOMETRY Sub-Strand : Circle Geometry Lesson number : 10
Learning outcomes	> SPECIFIC LEARNING OUTCOMES: - Identify the area of a sector of a circle - Apply the formula for finding the area of a sector $A=\frac{1}{2} R^{2} \theta$
Introduction	SECTOR AREA FORMULA The area of a sector is given by the formula : Area $A=\frac{1}{2} r^{2} \theta$ (Note : θ is in radians)

Example (ii) : Calculate the angle at the centre of this sector. Give answer in (a) radians and (b) degrees
Solutions : (a). $\theta=\frac{2 A}{r^{2}}$ $=\frac{2 \times 18}{5^{2}}$ $=\frac{36}{25}$ (b). To change from radians to degrees, multiply by $\frac{180^{\circ}}{\pi}$
1.44 radians $=1.44 \times \frac{180^{\circ}}{\pi}=82.5^{\circ}$

Exercises

Exercise :

1. Calculate the area for each of these sectors, correct to 4 s.f. where appropriate:
a. $r=4 \mathrm{~m} ; \theta=2$
b. centre angle $=\frac{\pi}{3}$; radius $=7 \mathrm{~cm}$
c. $r=2.4 \mathrm{~cm} ; \theta=234^{\circ}$
2. Calculate the centre angle for these sectors:
a. $A=18 \mathrm{~cm}^{2}, r=4 \mathrm{~cm}$ (in radians)
b. radius of 1.2 m ; area of $0.98 \mathrm{~m}^{2}$ (in degrees)
3. A sector has an arc length of 6 cm and an area of $9 \mathrm{~cm}^{2}$. Calculate the radius and the centre angle.
4. A World War II army truck has a rectangular windscreen measuring 186 cm by 63 cm . It is fitted with one wiper, hinged at the top, which moves backwards and forwards through an angle of 160°.

a. Calculate the area covered by the wiper as it cleans the windscreen.
b. Calculate the area that is not covered by the wiper.
c. What percentage of the windscreen does the wiper clean?

Solutions:

1. a. $16 \mathrm{~m}^{2}$
b. $25.66 \mathrm{~cm}^{2}$
c. $11.76 \mathrm{~cm}^{2}$
2. a. 2.25
b. 78.0°
3. $r=3 \mathrm{~cm} ; \theta=2$
4. a. $4224 \mathrm{~cm}^{2}$
b. $7494 \mathrm{~cm}^{2}$
c. 36%

Assignment	Note : It is a must that you (students) do this package and complete it in time allocated because assessments will be given later.
Assessment	

LESSON Plan

Week : 8
Wednesday : 08/07/20
Subject : Mathematics
Ine are enclosed by a chord and an arc of a circle is called a segment (shown

	Calaulate : i) the area of the kite ii) the shaded area Solution : 1. For each triangle: $\begin{aligned} \text { Area } & =\frac{1}{2} a b \sin C \\ & =\frac{1}{2}(10)(10) \sin 40^{\circ} \\ & =32.14 \mathrm{~m}^{2} \end{aligned}$ Area of kite $=$ area OPQ + area of OQR (Note: area of $\triangle O P Q=$ area of $\triangle O Q R$) $\begin{aligned} & =32.14 \mathrm{~m}^{2}+32.14 \mathrm{~m}^{2} \\ & =64.3 \mathrm{~m}^{2} \end{aligned}$ 2. The required area $=\text { area of sector OPR - area of kite OPQR }$ Area of sector OPR $=\frac{1}{2} r^{2} \theta$ $=\frac{1}{2} \times 10^{2} \times\left(80^{\circ} \times \frac{\pi}{180^{\circ}}\right)$ (Change degrees to radians) $\begin{aligned} & =\frac{1}{2} \times 100 \times\left(\frac{4 \pi}{9}\right) \\ & =69.8 \mathrm{~m}^{2} \\ \therefore \text { Area required } & =69.8-64.3 \\ & =5.5 \mathrm{~m}^{2} \end{aligned}$

4. In this diagram the triangle OPQ is an
equilateral triangle with sides 2 m long.
The circle has a radius of 1 m .

WEEKLY CHECKLIST For Parents:

Term: 2 Week number 1 Date...... to...... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	$\mathbf{1}$				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 2 Date...... to...... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 3 Date...... to...... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	$\mathbf{1}$				
	2				
	3				
	4				
	5				

Term: 2 Week number 4 Date......
 to.
 Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 5 Date...... to...... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 6 Date
 \qquad to. Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 7 Date...... to...... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 8 Date
 \qquad to. Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	$\mathbf{1}$				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 9 Date
 to. Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 10 Date...... to...... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 11 Date...... to...... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 12 Date...... to....... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

Term: 2 Week number 13 Date...... to...... Month:

Subject	Number of lessons	Days	Tick when activity is complete	Parents comment	Signature
	1				
	2				
	3				
	4				
	5				
	6				

