SOUTH PACIFIC BOARD FOR EDUCATIONAL ASSESSMENT

Marking Schedule 2008

Pacifte

 Senior SeGOncary Gertificate
© South Pacific Board for Educational Assessment, 2008
26 McGregor Road, Box 2083 Government Buildings, Suva, Fiji.
Telephone: (679) 3309622, 3315600, 3302141 Fax: (679) 3302898, 3303635
All rights reserved. No part of this publication may be reproduced by any means without the prior permission of the South Pacific Board for Educational Assessment.

SECTION A (160 marks)

QUESTION 1

(15 marks)
(a) (i)
(2 marks)

(ii)

| $\frac{1}{u}+\frac{1}{v}=\frac{1}{f} \quad \frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{1}{3.6}-\frac{1}{2.1}$ | $\sqrt{ } \quad \sqrt{c m}$ |
| ---: | :--- | ---: |
| $\frac{1}{v}=0.2 \quad$ | $V(-)$ value or behind mirror |
| | Or Answer can be measured from the diagram
 Position: -5 cm or 5 cm behind the mirror |

(iii)
(1 mark)

virtual

(b)
(1 mark)

(ii)

$$
\begin{aligned}
& n_{1} \sin \Theta_{1}=n_{2} \sin \Theta_{2} \\
&-\sin \\
& \Theta_{\mathrm{c}}=\left[\frac{n_{2}}{n_{1}}\right]^{-\sin }=\left[\frac{1}{1.41}\right]=45.2^{\circ}
\end{aligned}
$$

$$
(\sqrt{ } \sqrt{ }) \text { Correct Answer }
$$

Critical Angle: $\quad 45^{\circ}$ or 45.2°
(iii)
(1 mark)
The ray will experience TOTAL INTERNAL REFLECTION. ($\sqrt{ }$)
(c)
(i)

$$
\begin{aligned}
& \mathrm{n}_{1} \sin \Theta_{1}=\mathrm{n}_{2} \sin \Theta_{2} \\
& \Theta_{2}=\left[\frac{n_{1} \sin \theta_{1}}{n_{2}}\right]^{-\sin }=\left[\frac{1.20 \sin 40^{\circ}}{1.52}\right]^{-\sin }=30.5^{\circ}
\end{aligned}
$$

Angle: 30.5 or 31°
(ii)

Velocity will get less $(\sqrt{ })$ when light enters a more optically dense medium $(\sqrt{ })$.
(iii)

${ }_{1} \mathrm{n}_{2}=\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{\sin 40}{\sin 30.5}=1.266$ or ${ }_{1} \mathrm{n}_{2}=\frac{n_{2}}{n_{1}}=\frac{1.52}{1.2}=1.266$	$(\sqrt{ })$ correct answer
	$(\sqrt{ })$ correct use of equation using answer in (c)1

(a)

(i)
(ii)
$(\sqrt{ } \sqrt{ })$ both wavefronts correct
(2 marks)
(2 marks)

$\lambda=\frac{15}{3}=5 \mathrm{~cm} \div 100=0.05 \mathrm{~m}$	$\mathrm{f}=\frac{v}{\lambda}=\frac{4}{0.05}=80 \mathrm{~Hz}$	Correct λ Frequency: $\quad \underline{80 \mathrm{~Hz}}$

(b) (i)

The light from the sources is the same f and V (or λ or is in phase)
V one of the above is mentioned
(ii)

The dark band forms when: destructive interference occurs OR two waves out of phase meet $(\sqrt{ })$ AND the light is cancelled $(\sqrt{ })$.
(iii)

$$
\lambda=\frac{d x}{L} \quad \mathrm{x}=\frac{\lambda L}{d}=\frac{590 \times 10^{9} \times 0.75}{0.15 \times 10^{-3}}=2.95 \times 10^{15} \mathrm{~m}
$$

$$
2 \mathrm{x}=5.9 \times 10^{15} \quad \begin{aligned}
& \sqrt{ } \text { correct value for } \mathrm{x} \\
& \\
& \\
& \sqrt{ } \text { correct answer }
\end{aligned}
$$

Path Difference: $2 \lambda(\sqrt{ })$ correct answer
(v)

There will be a central white band $(\sqrt{ })$ with bands of the spectrum on both sides. $(\sqrt{ })$
(c)

The speed of sound varies with the medium it is travelling through $(\sqrt{ })$.
The first tap is the sound travelling through the metal in the pipe, the second tap is from the sound travelling through the air. $(\sqrt{ })$
(a)
(i)
(2 marks)

(ii)

The glass has different refractive for the different colours (f, λ) of light, $(\sqrt{ })$ causing them to change to different velocities which separates them. $(\sqrt{ })$
(b) (2 marks)

$\mathrm{d} \sin \Theta=(\mathrm{n}-1 / 2) \lambda$	$(\sqrt{ })$ correct use of equation
$\lambda=\frac{d \sin \theta}{n-\frac{1}{2}}=\frac{4 \sin 20}{2-1 / 2}=0.456 \mathrm{~m}$	
	Wavelength: $0.456-0.5 \mathrm{~m}$

(c) (i)
(2 marks)
(a) 2.5 and 4.5 seconds: She is slowing down or decelerating (no change in direction) ($\sqrt{ }$)
(b) 4.5 and 6 seconds: She has a constant velocity. $(\sqrt{ })$
(ii)
(1 mark)

$$
\text { slope }=\frac{10-0}{2.5-0}=4 \mathrm{~ms}^{-2}
$$

$(\sqrt{ })$ correct answer
Acceleration: $4 \mathrm{~ms}^{-2}$
(iii)

Area under the slope $=1 / 2 \times 2.5 \times 10=12.5 \mathrm{~m}$	$(\sqrt{ } \sqrt{ })$ correct answer
	Distance: 12.5 m

(iv)
$(\sqrt{ } \sqrt{ })$ correct answer

$$
v=\frac{\text { distance }}{\text { time }}=\frac{12.5}{2.5}=5 \quad \text { or } \quad v=\frac{v_{o}+v_{f}}{2}=5 \mathrm{~ms}^{-1}
$$

Average Velocity: $5 \mathrm{~ms}^{-1}$
(d) (i)

Net Force: zero N $(\sqrt{ })$ correct answer
(ii)
$\mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at} \quad \mathrm{a}=\frac{v-v_{o}}{t}=\frac{2.7-1.2}{6}=0.25 \mathrm{~ms}^{-2}(\sqrt{ } \sqrt{ })$ correct answer
Acceleration: $0.25 \mathrm{~ms}^{-2}$
(iii)

$$
d=1 / 2\left(v+v_{o}\right) t=1 / 2(2.7+1.2) 6=11.7 \mathrm{~m} \quad(\sqrt{ } \sqrt{ }) \text { correct answer }
$$

Distance: $11.7-12 \mathrm{~m}$
(iv)
$\mathrm{v}^{2}=\mathrm{v}_{\mathrm{o}}{ }^{2}+2 \mathrm{as} \quad \mathrm{a}=\frac{v^{2}-v_{o}{ }^{2}}{2 \mathrm{~s}}=\frac{0^{2}-2.7^{2}}{2 \times 8}=-0.455 \mathrm{~ms}^{-2}$
$(\sqrt{ } \sqrt{ })$ correct answer must be (-)

Acceleration: -0.455 to $-0.5 \mathrm{~ms}^{-2}$

QUESTION FOUR

(19 marks)
(a)

$(\sqrt{ })$ correctly drawn and labelled vectors \quad Resultant $=21-22 \mathrm{~cm}$ at $34^{\circ} \subset$
$(\sqrt{ })$ correct resultant (with angle)
(b)
(i)
(2 marks)

$$
\mathrm{F}_{\mathrm{net}}=\mathrm{ma}=95 \times 4=380 \mathrm{~N}
$$

$(\sqrt{ } \sqrt{ })$ correct answer

Force: 380 N

(ii)
(3 marks)

$$
\begin{aligned}
& F_{\text {net }}=F_{\text {lift }}-F_{g} \quad F_{g}=m g=95 \times 9.8=931(\sqrt{ }) \\
& F_{\text {lift }}=F_{\text {net }}-F_{g}=380-(-931)=1311 \mathrm{~N}(\sqrt{ } \sqrt{ })
\end{aligned}
$$

$$
\text { Force: } 1311 \mathrm{~N}
$$

(c) (i)

(ii)
(2 marks)

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{o}}=\mathrm{P}_{\mathrm{T}}=\sqrt{10,000^{2}+7000^{2}}=12,206 \mathrm{kgms}^{-1}(\sqrt{ }) \\
& \Theta=\left[\frac{o}{a}\right]^{-\tan }=\left[\frac{7000}{10000}\right]=35^{\circ} \quad \text { (西 } \quad \underline{\text { Total Momentum: } 12,206 \mathrm{kgms}^{-1} \text { at } 35^{\circ}}
\end{aligned}
$$

(iii)
$(\sqrt{ })$ - correct method using P_{T} from $Q(i i)$

$$
\mathrm{v}_{\mathrm{T}}=\frac{P_{\mathrm{T}}}{m+m}=\frac{12,206}{1000+1400}=5.1 \mathrm{~ms}^{-1} \quad \text { Final Speed: } 5-5.1 \mathrm{~ms}^{-1}
$$

(d)

(i)
$(\sqrt{ })$ correct direction: see above
(1 mark)
(ii)

$$
\mathrm{V}=\mathrm{V}_{\mathrm{X}} \quad(\sqrt{ }) \text { correct answer }
$$

$\mathrm{s}=1 / 2\left(\mathrm{v}+\mathrm{v}_{\mathrm{o}}\right) \mathrm{t}=1 / 2(0+9.0) 0.92=4.14 \mathrm{~m}$
or use of $v^{2}=v_{o}^{2}+2$ as to solve for s
Height: $4-4.14 \mathrm{~m}$
$(\sqrt{ })$ correct answer
(iv)

$$
\mathrm{t}=2 \times 0.92=1.84
$$

$$
\mathrm{d}=\mathrm{vt}=8.0 \times 1.84=14.72
$$

Range: $\quad 14.72-15 \mathrm{~m}(\sqrt{ })$
(a)

$\mathrm{a}=\frac{F}{m+m}=\frac{11,000}{2,500+2,500}=2.2 \mathrm{~ms}^{-2}$ $(\sqrt{ })$ correct magnitude Acceleration $=2.2 \mathrm{~ms}^{-2}$
(ii)
F $=\mathrm{ma}=2500 \times 2.2=5,500$

(iii)

The force of friction $(\sqrt{ })$ opposes the motion, causing a net force $(\sqrt{ })$ that slows down or decelerates the car.
(iv)
(4 marks)
$E_{k}=1 / 2 \mathrm{mv}^{2}=1 / 2 \times 2500 \times 3.6^{2}=16,200 \mathrm{~J}(\sqrt{ })$
$E_{k}=E_{p}(\sqrt{ })$ or showing this through using the method below
$\mathrm{h}=\frac{2 E_{p}}{m g}=\frac{2 \times 16,200}{2500 \times 9.8}=1.3 \mathrm{~m}(\sqrt{ } \sqrt{ }) \quad \underline{\text { Height }=1-1.3 \mathrm{~m}}$
(v)
(2 marks)
$\Delta \mathrm{P}=\mathrm{P}-\mathrm{P}_{\mathrm{o}}=5,500-9,000=-3,500 \mathrm{kgms}^{-1}$
or using $\Delta \mathrm{P}=\mathrm{m}\left(\mathrm{v}-\mathrm{v}_{\mathrm{o}}\right)$
$(\sqrt{ } \sqrt{ })$ correct answer (must have (-) sign)

$$
\text { Change in Momentum: } \quad-3,500 \mathrm{kgms}^{-1}
$$

(b) (i)

$\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{mv}^{2}=1 / 2 \times 0.6 \times 2^{2}=1.2 \mathrm{~J}$	$(\sqrt{ })$ correct value of mass
	$(\sqrt{ })$ correct answer
	Kinetic Energy: 1.2 J

$\mathrm{E}_{\mathrm{p}}=1 / 2 \mathrm{kx}^{2}$	$(\sqrt{ } \sqrt{ })$ correct answer
$\mathrm{x}=\sqrt{\frac{2 E_{p}}{k}}=\sqrt{\frac{2 \times 1.2}{200}}=0.1 \mathrm{~m}$	Distance: 0.1 m

(iii)
(1 mark)
$E_{p}=E_{k}$
Same answer as (i) (V)
Potential Energy: 1.2 J
(c) (i)
(1 mark)

slope $=\frac{0-200}{0.1-0.04}=-3,333 \mathrm{Nm}^{-1}$
$(\sqrt{ } \sqrt{ })$ correct answer (does not need $(-)$ sign)
Spring Constant: $-3,333 \mathrm{Nm}^{-1}$

(ii)

Work $=$ Area $=1 / 2 \mathrm{bh}=1 / 2 \times 0.06 \times 200=6 \mathrm{~J} \quad(\sqrt{ }$ $)$ Either solution shown
or using $\mathrm{E}_{\mathrm{p}}=1 / 2 \mathrm{kx}^{2}$ correctly using the value in (i)

Work Done: 6 J
(a) A 3500 kg aeroplane is flying in a circular path of a radius of 2000 m at a constant speed of $40 \mathrm{~ms}^{-1}$.

(i) $\quad(\sqrt{ })$ correct answer (See diagram above) (1 mark)
(ii)

(iii)

$\mathrm{a}=\frac{v^{2}}{r}=\frac{40^{2}}{2000}=0.8 \mathrm{~ms}^{-2}$ towards the centre	$(\sqrt{ })$ correct answer (must include
direction of vector)	

Acceleration: $0.8 \mathrm{~ms}^{-2}$ towards the centre
(b)

Mass of moon $=0.0123 \times$ mass of Earth $=0.0123 \times 5.98 \times 10^{24}=7.554 \times 10^{22} \mathrm{~kg}$ $\mathrm{F}=\frac{G m_{1} m_{2}}{r^{2}}=\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times 7.5554 \times 10^{22}}{\left(3.80 \times 10^{8}\right)^{2}}=2 \times 10^{20}$
$(\sqrt{ })$ correct calculation of moon's mass
Force: $2-2.1 \times 10^{20} \mathrm{~N}$
$(\sqrt{ })$ correct use of equation
(c) (i)
(1 mark)

State of Matter: solid $(\sqrt{ })$
(ii)
(2 marks)
$t=4 \times 60=240 \mathrm{~s}(\sqrt{ })$
$\mathrm{W}=\mathrm{Pt}=(2000 \times 240)=480,000 \mathrm{~J}(\sqrt{ }$ correct use of formula $)$
Heat Energy: 480,000 J
(iii)

$$
\begin{array}{ll}
H=m c \Delta t & (\sqrt{ }) \text { correct } \Delta t \\
c=\frac{48,000}{2(210-(-160))}=648.6 \mathrm{JKg}^{-1} \mathrm{o}^{-1} & (\sqrt{ }) \text { Correct use of formula with value of } \\
H \text { from (ii) }
\end{array}
$$

The heat energy is Latent Heat $(\sqrt{ })$ which is used to change the state of a substance $(\sqrt{ })$, not its temperature.
(v)

Latent Heat, used to evaporate the methylated spirits, is absorbed from her hand, making her hand feel cold. $(\sqrt{ })$

QUESTION SEVEN

(a)
(i)

$$
20+273=293 \mathrm{~K}(\sqrt{ })
$$

(1 mark)
(ii)

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{kT} \\
& \begin{array}{ll}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \quad \mathrm{~T}_{2}=\frac{P_{2} V_{2} T_{1}}{P_{1} V_{1}}=\frac{100 \times 600 \times 293}{120 \times 400}=366.25 \mathrm{~K}(\sqrt{ }) \text { correct use with value } \\
366-273=93{ }^{\circ} \mathrm{C}(\sqrt{ }) & \text { from (i) } \\
\text { Temperature: } 93{ }^{\circ} \mathrm{C}
\end{array}
\end{aligned}
$$

(b)
$\mathrm{P}=\frac{F}{A}=\frac{700}{0.0001}=7,000,000 \mathrm{~Pa}$
$(\sqrt{ } \sqrt{ })$ correct answer

Pressure: $7,000,000 \mathrm{~Pa}$
(c)
(i)
(1 mark)

The motion of the particles of the gas collide with the walls of the container. $(\sqrt{ })$
(ii)

The increase in the heat of the particles causes them to move faster $(\sqrt{ })$, colliding more often with the walls of the container, increasing the pressure. $(\sqrt{ })$
(d)
$\mathrm{E}=\frac{K Q}{r^{2}}=\frac{9 \times 10^{9} \times 5}{0.06^{2}}=1.25 \times 10^{13} \mathrm{NC}^{-1}(\sqrt{ })$ This is the value of E for each charge.

$\underline{\text { Field Strength and Direction: } 2-1.76 \times 10^{13} \mathrm{NC}^{-1} \text { at } 45^{\circ}}$
(e)

Refraction does not support the particle theory of light, it states that if light was a particle, then it would bend away from the normal when the velocity increases. $(\sqrt{ } \sqrt{ })$ or
Diffraction does not support the particle theory of light, if light was a particle, it would not bend when it went through a gap or around a barrier. $(\sqrt{ } \sqrt{ })$
(a) (i)

18 V means that the power supply gives each Coulomb of charge 18 J of energy.
$(\sqrt{ } \sqrt{ })$
(ii)
(1 mark)
$\mathrm{Q}=\mathrm{It}=4.5 \times 5=22.5 \mathrm{C}(\sqrt{ })$
Coulombs: 22.5
(iii)
(2 marks)

$\mathrm{R}=\frac{V}{I}=\frac{18}{4.5}=4 \Omega$	$(\sqrt{ })$ correct answer
Resistance: 4Ω	

(iv)	

(v)
(2 marks)

$\mathrm{V}=\mathrm{IR}=1.5 \times 4=6 \mathrm{~V}$	$(\sqrt{ })$ Correct method using I from (iv)
and R from (iii)	
$(\sqrt{ })$ Correct Anwer	
Potential Difference: 6 V	

(vi)
(1 mark)

The current is unchanged.
Current: 1.5 A or answer in (iv) $(\sqrt{ })$
(b)

(i) $\quad(\sqrt{ })$ See above, the can be no gaps between the arrow and the plates. (1 mark)
(ii)

$$
\begin{aligned}
& \mathrm{V}=\mathrm{Ed} \\
& \mathrm{E}=\frac{V}{d}=\frac{450}{0.02}=22,500 \mathrm{Vm}^{-1}
\end{aligned}
$$

Field Strength: $22,500 \mathrm{Vm}^{-1}$
(iii)
$\mathrm{W}=\mathrm{EQd}$ or $\mathrm{W}=\mathrm{Vq}=450 \times 20 \times 10^{-6}=9 \times 10^{-3} \mathrm{~J}$
$(\sqrt{ })$ Correct Answer

Potential Energy: $9 \times 10^{-3} \mathrm{~J}$

QUESTION NINE

(14 marks)
(a)

(i)

Copper has many free electrons - metallic bonding. ($\sqrt{ }$)

The atoms in the copper oppose the flow of the electrons. $(\sqrt{ })$
(iii)
(1 mark)

$$
\mathrm{R}=\frac{V}{I}=\frac{20}{0.8}=25 \Omega \quad(\sqrt{ }) \text { Correct Answer }
$$

Resistance: 25Ω
(iv) (See graph above) ($\sqrt{ }$)
b.

The split-ring commutator reverses the current every $1 / 2$ turn $(\sqrt{ })$, which allows for the continuous rotation.
(ii)

(2 marks)

The electrons moving $(\sqrt{ })$ in the wire are moving across a magnetic field. $(\sqrt{ })$ This results in a force acting on the electrons (coil).
(iii)

The return or hair spring (or the student can refer to the pointer system) will stretch proportionally to the force acting on it. ($\sqrt{ }$)
A larger current results in a larger turning force on the coil, therefore the coil turns in proportion to the current. $(\sqrt{ })$
(c)
(i)
(2 marks)

(ii)
(1 mark)

QUESTION TEN

(a) (i)
(10 marks)

The atom is mostly empty space. $(\sqrt{ })$
(ii)
(1 mark)

The atom has a small, dense, positive nucleus surrounded by negative electrons. $(\sqrt{ })$ (The answer is wrong if it includes the presence of neutrons.)
(b)
(2 marks)

(c) (i)
(3 marks) The Amount against Time for Substance Q

Amount
(g)

(ii)
$\frac{4}{32} \times 100=12.5 \% \quad(\sqrt{ })$ Correct Answer

$$
\text { Percentage: } \quad 12.5 \%
$$

(d)

All radioactive medical supplies are kept in locked, lead lined containers. ($\sqrt{ }$) or
All doctors and patients are protected by lead lined walls or coverings.
or
All radioactive waste material is disposed of in the proper manner.

Section A: Correct Unit Marks:

